Test Oracle Automation for V&V of an Autonomous Spacecraft’s Planner

Martin S. Feather

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109, USA
Martin.S.Feather@Jpl.Nasa.Gov

Context

The NASA “Deep Space 17 (DS-1) spacecraft was
launched in 1998 to evaluate promising new technologies
and instruments. The “Remote Agent”, an artificial
intelligence based autonomy architecture, was one of these
technologies, and in 1999 this software ran on the
spacecraft’s flight processor and controlled the spacecraft
for several days.

We built automation to assist the software testing efforts
associated with the Remote Agent experiment. In particular,
our focus was upon introducing test oracles into the testing
of the planning and scheduling system component. This
summary is intended to provide an overview of the work.

Challenges and Opportunities

The Remote Agent experiment used an on-board planner

to generate sequences of high-level commands that would

control the spacecraft. From a Verification and Validation

(V&V) perspective, the crucial observation is that the

Remote Agent was to be a self-sufficient autonomous

system operating a spacecraft over an extended period,

without human intervention or oversight. Hence, V&V of
its components, the planner included, was crucial.

Thorough testing was the primary means by which V&V

of the planner was performed. However, the nature of the

testing effort differed significantly from that of testing
more traditional spacecraft control mechanisms. In
particular: ‘

e The planner's output (plans) were detailed and
voluminous, ranging from 1,000 to 5,000 lines long.
Plans were. intended to be read by software, and were
not designed for easy perusal by humans.

e The planner could be called upon to operate (generate a
plan) in a wide range of circumstances. This variety
stems from the many possible initial conditions (state of
the spacecraft) and the many plausible goals (objectives
the plan is to achieve). Thorough V&V required testing
the planner on thousands of test cases, yielding a
separate plan for each.

e Each plan must satisfy all of the flight rules that
characterize correct operation of the spacecraft. (Flight
rules may refer to the state of the spacecraft and the

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). Al rights reserved.

Ben Smith

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109, USA
Ben.D.Smith@Jpl.Nasa.Gov

activities it performs, and describe temporal conditions
required among those states and activities.) The
information pertinent to deciding whether or not a plan
passes a flight rule was dispersed throughout the plan.
This exacerbated the problems of human perusal.
As a consequence, manual inspection of more than a small
fragment of plans generated in the course of testing was
recognized to be impractical.

The nature of the task — V&V of a software component of
an autonomous system - meant that there were
significantly increased opportunities. for automation.
Specifically:

e The data to check was self-contained. Each plan was a
self-contained object from which it could be
automatically determined whether or not each flight rule
holds, without need for human intervention.

o The data to check was in a machine-manipulable form,
since each plan was intended for consumption by the
automatic executive (another software component of the
Remote Agent). As a result, it was feasible to develop an
automated checker that would work directly on the data
available, again, without need for human intervention.

e The conditions to check — the “flight rules” of the
spacecraft - were also available in a machine-
manipulable form. They were provided as “constraints”
to the planner software, expressed in the planner’s
formal constraint language. As a result, it was feasible to
develop a translator that would take as input the flight
rules, as expressed for the planner, and automatically
generate the aforementioned test oracle.

Checking that a plan satisfies constraints s

computationally far less complex than finding that plan

(planning). Consequently, the checking code is simpler,

executes faster, and is easier to develop, than the planner

itself — an instance of what Blum terms a “ simple checker”

(Wasserman and Blum 1997).

Overall Approach

Our approach was to automate the checking of plans. We
constructed an automated piece of software that would
check the correctness of each plan that resulted from a test
run of the planner. In the phraseology of the testing
community, this was a “test oracle” (Richardson, Aha,



and O’Malley 1992). In our case, this correctness checking
oracle had two facets:

Verification: our test oracle checked that every flight rule
was satisfied by the generated plan. The over 200 such
flight rules were automatically checked in this manner,
thus verifying that the planner was not generating
hazardous command sequences in any of its test runs.
Furthermore, this facet of the test oracle was itself
generated automatically. We wrote an automatic translator
from the planner constraint language into the oracle’s
checking code.

Validation: our test oracle also performed some
validation-like checks. Opportunity for such validation
arose from a gap between the “natural” form of some
flight rules, and the way they had to be re-encoded so as to
be expressed to the planner. We were able to directly
express the “natural” statements of these flight rules as test
oracle checks. Thus, the automatic test oracle was able to
help validate that the planner and its inputs were
accomplishing the desired behavior.

Further Aspects of Planner V&V

Exploiting Redundancy and Rationale
Information During Checking

Each plan contained both a schedule of activities, and a

trace relating those actions to the constraints taken into

- account in their planning. In addition to checking

adherence to flight rules, our test oracle also crosschecked

this trace information. Specifically, for every constraint

that the oracle calculated had a bearing on a planned

action, the presence of the corresponding trace information

was checked for, and vice-versa.

The advantages of this additional crosschecking were

twofold:

e Increased assurance that the test oracle itself was
operating correctly.

e Increased assurance that the planner was operating
correctly — its plans were correct (adhered to all the
flight rules) for “the right reasons”. This gave the

planner experts more confidence in extrapolating
correctly passing the test cases to correctness of the
planner in general.
We see this as an instance of the value of crosschecking
redundant information, most especially rationale
information.
The somewhat redundant-seeming crosschecking made it
unlikely that the oracle code itself had a “blind spot” that
would overlook a fault in a plan. Eliminating “false
positives” (which in our case would correspond to the
oracle judging an incorrect plan as correct) is a serious
concern (Andrews 1998), and our experience suggests that
crosschecking of this kind can help in this regard.
The nature of the trace information being crosschecked is a
simple form of rationale — information that justifies why an
action is there in the plan. Knowledge-based systems can
readily provide some form of trace of the reasoning
process they follow, yielding such rationale information.

Structuring the Analysis Results

The essential purpose of a test oracle is to determine
whether or not a test case satisfies a condition. In our
application, we found it beneficial to return more than
simply a “pass” or “fail” result for each plan:

e When a plan failed the tests, the oracle returned
information indicating which constraint(s) were not met
by the plan, and which activities in the plan (or lacking
from the plan) were involved. During development of
the test oracle generation code, this information was
useful to aid the programmer to debug what was wrong
with the test oracle; during application of the test oracles
in planner testing, this information was useful to aid the
planner expert to debug the planner.

When a plan passed the tests, the oracle reported which
constraints were exercised by the plan (e.g., only plans
that involved engine-thrusting activities were said to
have exercised a constraint of the form “every engine-
thrusting activity must ...””). The oracle also drew
distinctions between several ways in which a constraint
could be met. This information was useful for the
planning experts to gauge the extent of coverage that the

Y / Goals & initial activities
anua » conditions PLAN of plan
Requirements decomposition PLANNER [P
(natural and expression
—p i >
language) Constraints Automatic
Automatic Database schema | Manually created loading of
Manual translation I database
expression Database queries >
1 —>| DATABASE [¢—
ata
Database query L
Automatic analysis
Figure 1 — Architecture of planner test oracle Query results: pass/fail + details




tests had provided.

Implementation and Development

There are some unusual aspects to the way in which we
implemented the test oracles. They used as their
underlying reasoning engine a database.

The architecture of this is shown in Figure 1. To perform a
series of checks of a plan, we automatically loaded the plan
as data into the database, having previously created a
database schema for the kinds of information held in plans.
We expressed the flight rules as database queries. During
oracle execution, the database query evaluator was used to
automatically evaluate those queries against the data.
Query results were organized into those that correspond to
passing a test, reported as confirmations, and those that
correspond to failing a test, reported as anomalies.

The actual database we used was AP5 (Cohen 1989), a
research-quality advanced database tool developed at the
University of Southern California. AP5’s first-order
predicate logic like query language seemed well suited to
the expression of the conditions to be checked by the
oracle. The constraints input to the planner could be
automatically translated into AP5 queries, and the
"natural” form of some flight rules could be
straightforwardly expressed as further AP5 queries.

Development Process

We followed a staged process to get to the final point of

automatically generated test oracles:

e The viability of database-based analysis as a rapid
analysis technique was demonstrated in pilot studies on
traditional design information (Feather 1998).

o A pilot study was used to establish the feasibility of this
approach for the checking of the AI planner. The
positive results of this pilot study alleviated particular
concerns about scalability, and investment of planning
experts’ time.

e The test oracle generator tool was developed, and
deployed during testing of the spacecraft’s planner.
Development was done primarily by a non-planner
expert, aided by a steady stream of advice, information
and examples from the planner experts. A planner expert
applied the tool during testing, and manually expressed
the validation conditions as AP35 queries.

Conclusions

The automatically generated test oracles, augmented by
manually expressed validation checks, served to automate
what would otherwise have been an impractically
burdensome manual activity. Further details of this effort
can be found in (Feather and Smith 1999).

Note that this work on test oracles addressed only a small
subset of the V&V problems posed by the DS-1
spacecraft’s planner. Other significant problems included
determining which, and how many, test cases to run, and

testing the planner for adequate performance (i.e.,
generated a plan sufficiently quickly). For further
discussion of these issues, the reader is referred to (Smith
and Feather 1999), (Smith, Feather, and Muscettola 2000)

- Acknowledgements

The research and development described in this paper was
carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautics and Space Administration. Funding was
provided under NASA's Code Q Software Program Center
Initiative UPN #323-098-5b, and by the Autonomy
Technology Program. The authors thank the other
members of the DS-1 planner team, especially Nicola
Muscettola and Kanna Rajan, for their help.

References

Andrews, J.H. 1998. Testing using Log File Analysis:
Tools, Methods, and Issues. In Proceedings of the 13th
IEEE International Conference on Automated Software
Engineering, 157-166, Honolulu, Hawaii.

Cohen, D. 1989. Compiling Complex Database Transition
Triggers. In Proceedings of the ACM SIGMOD
International Conference on the Management of Data, 225-
234, Portland, Oregon.

Feather, M.S. 1998. Rapid Application of Lightweight
Formal Methods for Consistency Analysis. I[EEE
Transactions on Software Engineering, 24(11):949-959,

Feather, M.S.; Smith, B. 1999. Automatic Generation of
Test Oracles — From Pilot Studies to Application. In
Proceedings of the 14th IEEE International Conference on
Software Engineering, 63-72, Cocoa Beach, Florida.

Richardson, D. J.; Aha, S. L.; and O’Malley, T. 1992.
Specification-based Test Oracles for Reactive Systems. In
Proceedings of the 14th International Conference on
Software Engineering, 105-118, Melbourne, Australia.

Smith, B.; Feather, M.S. 1999. Verifying an Al Planner for
an Autonomous Spacecraft. In Proceedings of the IASTED
International Conference on AI and Soft Computing,
Honolulu, Hawaii.

Smith, B; Feather, M.S.; Muscettola, N. 2000 Challenges
and Methods in Testing the Remote Agent Planner. In
Proceedings of the 2nd International Workshop on
Planning and Scheduling for Space, San Francisco,
California.

Wasserman, H.; and Blum, M. 1997. Software Reliability
via Run-Time Result-Checking. JACM 44(6):826-845.



